Search results for "Multi-particle collision dynamics"
showing 2 items of 2 documents
Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics
2019
Abstract Colloidal solutions of magnetic nanoparticles are usually employed when the fluidity and magnetic properties are required at the same time, either in technical or biomedical applications. However, when the magnetic size of the nanoparticles is large enough (>12–15 nm) the colloid may form an equilibrium structure with or without the external magnetic field, which can significantly influence its rheology. Using multi-particle collision dynamics we study the internal structure and viscosity of the magnetic colloids at varying magnitudes of the externally applied field. We show a generalized structural behavior across all studied regimes and an appreciable increase of flow resistance …
Self-assembly and rheology of dipolar colloids in simple shear studied using multi-particle collision dynamics.
2017
Magnetic nanoparticles in a colloidal solution self-assemble in various aligned structures, which has a profound influence on the flow behavior. However, the precise role of the microstructure in the development of the rheological response has not been reliably quantified. We investigate the self-assembly of dipolar colloids in simple shear using hybrid molecular dynamics and multi-particle collision dynamics simulations with explicit coarse-grained hydrodynamics, conduct simulated rheometric studies and apply micromechanical models to produce master curves, showing evidence of the universality of the structural behavior governed by the competition between the bonding (dipolar) and erosive …